跳到主要内容
版本:0.10.0

在 DarkNet 模型中编译 YOLO-V2 和 YOLO-V3

备注

单击 此处 下载完整的示例代码

作者Siju Samuel

本文介绍如何用 TVM 部署 DarkNet 模型。所有必需的模型和库都可通过脚本从 Internet 下载。此脚本运行带有边界框的 YOLO-V2 和 YOLO-V3 模型。DarkNet 解析依赖 CFFI 和 CV2 库,因此执行脚本前要安装这两个库。

pip install cffi
pip install opencv-python
# numpy 和 matplotlib
import numpy as np
import matplotlib.pyplot as plt
import sys

# tvm 和 relay
import tvm
from tvm import te
from tvm import relay
from ctypes import *
from tvm.contrib.download import download_testdata
from tvm.relay.testing.darknet import __darknetffi__
import tvm.relay.testing.yolo_detection
import tvm.relay.testing.darknet

选择模型

模型有:‘yolov2’、‘yolov3’ 或 ‘yolov3-tiny’

# 模型名称
MODEL_NAME = "yolov3"

下载所需文件

第一次编译的话需要下载 cfg 和 weights 文件。

CFG_NAME = MODEL_NAME + ".cfg"
WEIGHTS_NAME = MODEL_NAME + ".weights"
REPO_URL = "https://github.com/dmlc/web-data/blob/main/darknet/"
CFG_URL = REPO_URL + "cfg/" + CFG_NAME + "?raw=true"
WEIGHTS_URL = "https://pjreddie.com/media/files/" + WEIGHTS_NAME

cfg_path = download_testdata(CFG_URL, CFG_NAME, module="darknet")
weights_path = download_testdata(WEIGHTS_URL, WEIGHTS_NAME, module="darknet")

# 下载并加载 DarkNet 库
if sys.platform in ["linux", "linux2"]:
DARKNET_LIB = "libdarknet2.0.so"
DARKNET_URL = REPO_URL + "lib/" + DARKNET_LIB + "?raw=true"
elif sys.platform == "darwin":
DARKNET_LIB = "libdarknet_mac2.0.so"
DARKNET_URL = REPO_URL + "lib_osx/" + DARKNET_LIB + "?raw=true"
else:
err = "Darknet lib is not supported on {} platform".format(sys.platform)
raise NotImplementedError(err)

lib_path = download_testdata(DARKNET_URL, DARKNET_LIB, module="darknet")

DARKNET_LIB = __darknetffi__.dlopen(lib_path)
net = DARKNET_LIB.load_network(cfg_path.encode("utf-8"), weights_path.encode("utf-8"), 0)
dtype = "float32"
batch_size = 1

data = np.empty([batch_size, net.c, net.h, net.w], dtype)
shape_dict = {"data": data.shape}
print("Converting darknet to relay functions...")
mod, params = relay.frontend.from_darknet(net, dtype=dtype, shape=data.shape)

输出结果:

Converting darknet to relay functions...

将计算图导入到 Relay 中

编译模型:

target = tvm.target.Target("llvm", host="llvm")
dev = tvm.cpu(0)
data = np.empty([batch_size, net.c, net.h, net.w], dtype)
shape = {"data": data.shape}
print("Compiling the model...")
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target=target, params=params)

[neth, netw] = shape["data"][2:] # 当前图像 shape 是 608x608

输出结果:

Compiling the model...
/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead.
"target_host parameter is going to be deprecated. "

加载测试图像

test_image = "dog.jpg"
print("Loading the test image...")
img_url = REPO_URL + "data/" + test_image + "?raw=true"
img_path = download_testdata(img_url, test_image, "data")

data = tvm.relay.testing.darknet.load_image(img_path, netw, neth)

输出结果:

Loading the test image...

在 TVM Runtime 上执行

这个过程与其他示例的相同。

from tvm.contrib import graph_executor

m = graph_executor.GraphModule(lib["default"](dev))

# 设置输入
m.set_input("data", tvm.nd.array(data.astype(dtype)))
# 执行
print("Running the test image...")

# 检测
# 阈值
thresh = 0.5
nms_thresh = 0.45

m.run()
# 得到输出
tvm_out = []
if MODEL_NAME == "yolov2":
layer_out = {}
layer_out["type"] = "Region"
# 获取区域层属性(n、out_c、out_h、out_w、classes、coords 和 background)
layer_attr = m.get_output(2).numpy()
layer_out["biases"] = m.get_output(1).numpy()
out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
layer_out["output"] = m.get_output(0).numpy().reshape(out_shape)
layer_out["classes"] = layer_attr[4]
layer_out["coords"] = layer_attr[5]
layer_out["background"] = layer_attr[6]
tvm_out.append(layer_out)
elif MODEL_NAME == "yolov3":
for i in range(3):
layer_out = {}
layer_out["type"] = "Yolo"
# 获取 yolo 层属性(n、out_c、out_h、out_w、classes 和 total)
layer_attr = m.get_output(i * 4 + 3).numpy()
layer_out["biases"] = m.get_output(i * 4 + 2).numpy()
layer_out["mask"] = m.get_output(i * 4 + 1).numpy()
out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
layer_out["output"] = m.get_output(i * 4).numpy().reshape(out_shape)
layer_out["classes"] = layer_attr[4]
tvm_out.append(layer_out)
elif MODEL_NAME == "yolov3-tiny":
for i in range(2):
layer_out = {}
layer_out["type"] = "Yolo"
# 获取 yolo 层属性(n、out_c、out_h、out_w、classes 和 total)
layer_attr = m.get_output(i * 4 + 3).numpy()
layer_out["biases"] = m.get_output(i * 4 + 2).numpy()
layer_out["mask"] = m.get_output(i * 4 + 1).numpy()
out_shape = (layer_attr[0], layer_attr[1] // layer_attr[0], layer_attr[2], layer_attr[3])
layer_out["output"] = m.get_output(i * 4).numpy().reshape(out_shape)
layer_out["classes"] = layer_attr[4]
tvm_out.append(layer_out)
thresh = 0.560

# 检测,并画出边界框
img = tvm.relay.testing.darknet.load_image_color(img_path)
_, im_h, im_w = img.shape
dets = tvm.relay.testing.yolo_detection.fill_network_boxes(
(netw, neth), (im_w, im_h), thresh, 1, tvm_out
)
last_layer = net.layers[net.n - 1]
tvm.relay.testing.yolo_detection.do_nms_sort(dets, last_layer.classes, nms_thresh)

coco_name = "coco.names"
coco_url = REPO_URL + "data/" + coco_name + "?raw=true"
font_name = "arial.ttf"
font_url = REPO_URL + "data/" + font_name + "?raw=true"
coco_path = download_testdata(coco_url, coco_name, module="data")
font_path = download_testdata(font_url, font_name, module="data")

with open(coco_path) as f:
content = f.readlines()

names = [x.strip() for x in content]

tvm.relay.testing.yolo_detection.show_detections(img, dets, thresh, names, last_layer.classes)
tvm.relay.testing.yolo_detection.draw_detections(
font_path, img, dets, thresh, names, last_layer.classes
)
plt.imshow(img.transpose(1, 2, 0))
plt.show()

from darknet

输出结果:

Running the test image...
class:['dog 0.994'] left:127 top:227 right:316 bottom:533
class:['truck 0.9266'] left:471 top:83 right:689 bottom:169
class:['bicycle 0.9984'] left:111 top:113 right:577 bottom:447

脚本总运行时长:(1 分 1.020 秒)

下载 Python 源代码:from_darknet.py

下载 Jupyter Notebook:from_darknet.ipynb