跳到主要内容
版本:0.13.0

构建图卷积网络

备注

单击 此处 下载完整的示例代码

作者Yulun YaoChien-Yu Lin

本文介绍如何用 Relay 构建图卷积网络(GCN)。本教程演示在 Cora 数据集上运行 GCN。Cora 数据集是图神经网络(GNN)的 benchmark,同时是支持 GNN 训练和推理的框架。我们直接从 DGL 库加载数据集来与 DGL 进行同类比较。

pip install torch==2.0.0
pip install dgl==v1.0.0

有关 DGL 安装,参阅 DGL 文档

有关 PyTorch 安装,参阅 PyTorch 指南

使用 PyTorch 后端在 DGL 中定义 GCN

这部分重用了 DGL 示例 的代码。

import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import networkx as nx
from dgl.nn.pytorch import GraphConv

class GCN(nn.Module):
def __init__(self, g, n_infeat, n_hidden, n_classes, n_layers, activation):
super(GCN, self).__init__()
self.g = g
self.layers = nn.ModuleList()
self.layers.append(GraphConv(n_infeat, n_hidden, activation=activation))
for i in range(n_layers - 1):
self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation))
self.layers.append(GraphConv(n_hidden, n_classes))

def forward(self, features):
h = features
for i, layer in enumerate(self.layers):
# handle api changes for differnt DGL version
# 处理不同 DGL 版本的不同函数
if dgl.__version__ > "0.3":
h = layer(self.g, h)
else:
h = layer(h, self.g)
return h

输出结果:

Using backend: pytorch

定义加载数据集和评估准确性的函数

可以将这部分替换为你自己的数据集,本示例中,我们选择从 DGL 加载数据:

from dgl.data import load_data
from collections import namedtuple

def evaluate(g, logits):
label = g.ndata["label"]
test_mask = g.ndata["test_mask"]

pred = logits.argmax(axis=1)
acc = (torch.Tensor(pred[test_mask]) == label[test_mask]).float().mean()

return acc

加载数据并设置模型参数

"""
Parameters
----------
num_layer: int
number of hidden layers

num_hidden: int
number of the hidden units in the hidden layer

infeat_dim: int
dimension of the input features

num_classes: int
dimension of model output (Number of classes)
"""

dataset = dgl.data.CoraGraphDataset()
dgl_g = dataset[0]

num_layers = 1
num_hidden = 16
features = dgl_g.ndata["feat"]
infeat_dim = features.shape[1]
num_classes = dataset.num_classes

输出结果:

Downloading /workspace/.dgl/cora_v2.zip from https://data.dgl.ai/dataset/cora_v2.zip...
Extracting file to /workspace/.dgl/cora_v2
Finished data loading and preprocessing.
NumNodes: 2708
NumEdges: 10556
NumFeats: 1433
NumClasses: 7
NumTrainingSamples: 140
NumValidationSamples: 500
NumTestSamples: 1000
Done saving data into cached files.
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.graph will be deprecated, please use dataset[0] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.num_labels will be deprecated, please use dataset.num_classes instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

设置 DGL-PyTorch 模型以取得最好的结果

https://github.com/dmlc/dgl/blob/master/examples/pytorch/gcn/train.py 训练权重。

from tvm.contrib.download import download_testdata

features = torch.FloatTensor(features)

torch_model = GCN(dgl_g, infeat_dim, num_hidden, num_classes, num_layers, F.relu)

# 下载预训练的权重
model_url = "https://homes.cs.washington.edu/~cyulin/media/gnn_model/gcn_cora.torch"
model_path = download_testdata(model_url, "gcn_cora.pickle", module="gcn_model")

# 将 weights 加载到模型中
torch_model.load_state_dict(torch.load(model_path))

输出结果:

/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/base.py:45: DGLWarning: Recommend creating graphs by `dgl.graph(data)` instead of `dgl.DGLGraph(data)`.
return warnings.warn(message, category=category, stacklevel=1)

<All keys matched successfully>

运行 DGL 模型并测试准确性

torch_model.eval()
with torch.no_grad():
logits_torch = torch_model(features)
print("Print the first five outputs from DGL-PyTorch execution\n", logits_torch[:5])

acc = evaluate(dgl_g, logits_torch.numpy())
print("Test accuracy of DGL results: {:.2%}".format(acc))

输出结果:

Print the first five outputs from DGL-PyTorch execution
tensor([[-0.2198, -0.7980, 0.0784, 0.9232, -0.9319, -0.7733, 0.9410],
[-0.4646, -0.6606, -0.1732, 1.1829, -0.3705, -0.5535, 0.0858],
[-0.0031, -0.4156, 0.0175, 0.4765, -0.5887, -0.3609, 0.2278],
[-0.8559, -0.8860, 1.4782, 0.9262, -1.3100, -1.0960, -0.0908],
[-0.0702, -1.1651, 1.1453, -0.3586, -0.4938, -0.2288, 0.1827]])
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.test_mask will be deprecated, please use g.ndata['test_mask'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.label will be deprecated, please use g.ndata['label'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
Test accuracy of DGL results: 10.00%

在 Relay 中定义图卷积层

在 TVM 上运行 GCN 之前,首先实现 Graph Convolution Layer。参考 https://github.com/dmlc/dgl/blob/master/python/dgl/nn/mxnet/conv/graphconv.py 了解在 DGL 中使用 MXNet 后端实现的 GraphConv 层的更多信息。

该层由以下操作定义。注意:我们用两个转置来保持 sparse_dense 算子右侧的邻接矩阵,此方法是临时的,接下来几周内会更新稀疏矩阵转置,使得支持左稀疏算子。

GraphConv(A,H,W)=AHW=((HW)tAt)t=((WtHt)At)tGraphConv(A,H,W)=A∗H∗W= ((H∗W)^{t}∗A^{t})^{t} = (( W^{t} ∗ H^{t})∗ A^{t} )^{t}
from tvm import relay
from tvm.contrib import graph_executor
import tvm
from tvm import te

def GraphConv(layer_name, input_dim, output_dim, adj, input, norm=None, bias=True, activation=None):
"""
参数
----------
layer_name: str
图层名称

input_dim: int
每个节点特征的输入维度

output_dim: int,
每个节点特征的输出维度

adj: namedtuple,
稀疏格式的图形表示(邻接矩阵)(`data`,`indices`,`indptr`),其中`data`的 shape 为[num_nonzeros],indices`的 shape 为[num_nonzeros],`indptr`的 shape 为[num_nodes + 1]

input: relay.Expr,
shape 为 [num_nodes, input_dim] 的当前层的输入特征

norm: relay.Expr,
范数传给该层,对卷积前后的特征进行归一化。

bias: bool
将 bias 设置为 True,在处理 GCN 层时添加偏差

activation: <function relay.op.nn>,
激活函数适用于输出,例如 relay.nn.{relu,sigmoid,log_softmax,softmax,leaky_relu}

返回
----------
输出:tvm.relay.Expr
该层的输出张量 [num_nodes, output_dim]
"""
if norm is not None:
input = relay.multiply(input, norm)

weight = relay.var(layer_name + ".weight", shape=(input_dim, output_dim))
weight_t = relay.transpose(weight)
dense = relay.nn.dense(weight_t, input)
output = relay.nn.sparse_dense(dense, adj)
output_t = relay.transpose(output)
if norm is not None:
output_t = relay.multiply(output_t, norm)
if bias is True:
_bias = relay.var(layer_name + ".bias", shape=(output_dim, 1))
output_t = relay.nn.bias_add(output_t, _bias, axis=-1)
if activation is not None:
output_t = activation(output_t)
return output_t

准备 GraphConv 层所需的参数

import numpy as np
import networkx as nx

def prepare_params(g):
params = {}
params["infeats"] = g.ndata["feat"].numpy().astype("float32")

# 生成邻接矩阵
nx_graph = dgl.to_networkx(g)
adjacency = nx.to_scipy_sparse_array(nx_graph)
params["g_data"] = adjacency.data.astype("float32")
params["indices"] = adjacency.indices.astype("int32")
params["indptr"] = adjacency.indptr.astype("int32")

# 标准化 w.r.t.节点的度
degs = [g.in_degrees(i) for i in range(g.number_of_nodes())]
params["norm"] = np.power(degs, -0.5).astype("float32")
params["norm"] = params["norm"].reshape((params["norm"].shape[0], 1))

return params

params = prepare_params(dgl_g)

# 检查特征的 shape 和邻接矩阵的有效性
assert len(params["infeats"].shape) == 2
assert (
params["g_data"] is not None and params["indices"] is not None and params["indptr"] is not None
)
assert params["infeats"].shape[0] == params["indptr"].shape[0] - 1

输出结果:

/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

逐层叠加

# 在 Relay 中定义输入特征、范数、邻接矩阵
infeats = relay.var("infeats", shape=features.shape)
norm = relay.Constant(tvm.nd.array(params["norm"]))
g_data = relay.Constant(tvm.nd.array(params["g_data"]))
indices = relay.Constant(tvm.nd.array(params["indices"]))
indptr = relay.Constant(tvm.nd.array(params["indptr"]))

Adjacency = namedtuple("Adjacency", ["data", "indices", "indptr"])
adj = Adjacency(g_data, indices, indptr)

# 构建 2 层 GCN
layers = []
layers.append(
GraphConv(
layer_name="layers.0",
input_dim=infeat_dim,
output_dim=num_hidden,
adj=adj,
input=infeats,
norm=norm,
activation=relay.nn.relu,
)
)
layers.append(
GraphConv(
layer_name="layers.1",
input_dim=num_hidden,
output_dim=num_classes,
adj=adj,
input=layers[-1],
norm=norm,
activation=None,
)
)

# 分析自由变量并生成 Relay 函数
output = layers[-1]

输出结果:

/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.feat will be deprecated, please use g.ndata['feat'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))

使用 TVM 编译和运行

将权重从 PyTorch 模型导出到 Python 字典:

model_params = {}
for param_tensor in torch_model.state_dict():
model_params[param_tensor] = torch_model.state_dict()[param_tensor].numpy()

for i in range(num_layers + 1):
params["layers.%d.weight" % (i)] = model_params["layers.%d.weight" % (i)]
params["layers.%d.bias" % (i)] = model_params["layers.%d.bias" % (i)]

# 设置 TVM 构建 target
target = "llvm" # 目前只支持 `llvm` 作为目标

func = relay.Function(relay.analysis.free_vars(output), output)
func = relay.build_module.bind_params_by_name(func, params)
mod = tvm.IRModule()
mod["main"] = func
# 使用 Relay 构建
with tvm.transform.PassContext(opt_level=0): # 目前只支持 opt_level=0
lib = relay.build(mod, target, params=params)

# 生成图执行器
dev = tvm.device(target, 0)
m = graph_executor.GraphModule(lib["default"](dev))

运行 TVM 模型,测试准确性并使用 DGL 进行验证

m.run()
logits_tvm = m.get_output(0).numpy()
print("Print the first five outputs from TVM execution\n", logits_tvm[:5])

acc = evaluate(dgl_g, logits_tvm)
print("Test accuracy of TVM results: {:.2%}".format(acc))

import tvm.testing

# 使用 DGL 模型验证结果
tvm.testing.assert_allclose(logits_torch, logits_tvm, atol=1e-3)

输出结果:

Print the first five outputs from TVM execution
[[-0.21976954 -0.7979525 0.07836491 0.9232204 -0.93188703 -0.7732947
0.9410008 ]
[-0.4645713 -0.66060466 -0.17316166 1.1828876 -0.37051404 -0.5534965
0.08579484]
[-0.00308266 -0.41562504 0.0175378 0.47649348 -0.5886737 -0.3609016
0.22782072]
[-0.8559376 -0.8860172 1.4782399 0.9262254 -1.3099641 -1.0960144
-0.09084877]
[-0.07015878 -1.1651071 1.1452857 -0.35857323 -0.49377596 -0.22878847
0.18269953]]
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.label will be deprecated, please use g.ndata['label'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
/usr/local/lib/python3.7/dist-packages/dgl/data/utils.py:286: UserWarning: Property dataset.test_mask will be deprecated, please use g.ndata['test_mask'] instead.
warnings.warn('Property {} will be deprecated, please use {} instead.'.format(old, new))
Test accuracy of TVM results: 10.00%

下载 Python 源代码:build_gcn.py

下载 Jupyter Notebook:build_gcn.ipynb